At the IBM Systems and Technology Group analyst briefing two days ago, IBM displayed three notable statistics:
1. The global amount of information stored has been growing at 70-100% per year the last 5 years, with the result that the amount of storage has been growing by 20-40% per year;
2. The amount of enterprise expenditures for datacenter power/cooling has grown by more than 10-fold over the last 15 years, with the result that these expenditures are now around 16% of system TCO – equal to the cost of the hardware, although well below the also-rising costs of administration;
3. Datacenter energy usage has doubled over the last five years.
These statistics almost certainly underestimate the growth in computing’s energy usage, inside and outside IT. They focus on infrastructure in place 5 years ago, ignoring a highly likely shift to new or existing data centers in developing countries that are highly likely to be more energy-inefficient. Also, they ignore the tendency to shift computing usage outside of the data center and into the small-form-factor devices ranging from the PC to the iPhone that are proliferating in the rest of the enterprise and outside its virtual walls. Even without those increases, it is clear that computing has moved from an estimated 2 % of global energy usage 5 years ago to somewhere between 3 and 4%. Nor has more energy usage in computing led to a decrease in other energy usage – if anything, it has had minimal or no effect at all. In other words, computing has not been effectively used to increase energy efficiency or decrease energy use by more than marginal amounts – not because the tools are not beginning to arrive, but rather because they are not yet being used by enterprises and governments to monitor and improve energy usage in an effective enough way.
And yet, there have been voices – mine among them – pointing out that this was a significant problem, and that there were ways to move much more aggressively, since the very beginning. I remember giving a speech in 2008 to IT folks, in the teeth of the recession, stressing that the problem would only get worse if ignored, that doing something about it would in fact have a short payback period, and that tools for making a major impact were already there. Here we are, and the reaction of the presenters and audience at the STG conference is that the rise in energy usage is no big deal, that datacenters are handling it just fine with a few tweaks, and that IT should focus almost exclusively on cutting administrative costs.
All this reminds me of a Robin Williams comedy routine after the Wall Street implosion. Noting the number of people blindly investing with Bernard Madoff, pronounced “made off” as in “made off with your money”, Robin simply asked, “Was the name not a clue?” So, I have to ask, “energy usage”: is the name not a clue? What does it take to realize that this is a serious and escalating problem?
The Real Danger
Right now, it is all too easy to play the game of “out of sight, out of time, out of mind.” Datacenter energy usage seems as if it is easily handled over the next few years. Related energy usage is out of the sight of corporate. Costs in a volatile global economy that stubbornly refuses to lift off (except in “developing markets” with lower costs to begin with), not to mention innovations to attract increasingly assertive consumers, seem far more urgent than energy issues.
However, the metrics we use to determine this are out of whack. Not only do they, as noted above, ignore the movement of energy usage to areas of lower efficiency, but they also ignore the impact of the Global 10,000 moving in lockstep to build on instead of replacing existing solutions.
Let’s see how it has worked up to now. Corporate demands that IT increase capabilities while not increasing costs. The tightness of the constraints and the existence of less-efficient infrastructure causes IT to increase wasteful scale-out computing almost as much as fast-improving scale-up computing, and also to move some computing outside the data center – e.g., Bring Your Own Device – or overseas – e.g., to an available facility in Manila that is cheaper to provision if it is not comparably energy-optimized at the outset. Next year, the same scenario plays out, only with even greater costs from rebuilding from scratch a larger amount of existing inefficient physical and hardware infrastructure. And on it goes.
But all this would mean little – just another little cost passed on to the consumer, since everyone’s doing it – were it not for two things; two Real Dangers. First, the same process impelling too-slow dealing with energy inefficiency is also impelling a decreasing ability of the enterprise to monitor and control energy usage in an effective way, once it gets around to it. More of the energy usage that should be under the company’s eye is moving to developing countries and to employees/consumers using their own private energy sources inside the walls, so that the barriers to monitoring are greater and the costs of implementing monitoring are higher.
Second – and this is more long-term but far more serious – shifts to carbon-neutral economies are taking far too long, so that every government and economy faces an indefinite future of increasing expenditures to cope with natural disasters, decreasing food availability, steadily increasing human and therefore plant/office/market migration, and increasing energy inefficiency as heating/cooling systems designed for one balance of winter and summer are increasingly inappropriate for a new balance. While all estimates are speculative, the ones I think most realistic indicate that over the next ten years, assuming nothing effective is done, the global economy will reach underperformance by up to 1% per year due to these things, and up to double that by 2035. That, in turn, translates into narrower profit margins due primarily both to consumer demand underperformance and rising energy and infrastructure maintenance costs, hitting the least efficient first, but hitting everyone eventually.
The Blame and the Task
While it’s easy to blame the vendors or corporate blindness for this likely outcome, in this case I believe that IT should take its share of the blame – and of the responsibility for turning things around. IT was told that this was a problem, five years ago. Even had corporate been unwilling to worry about the future that far ahead, IT should at least have considered the likely effects of five years of inattention and pointed them out to corporate.
That, in turn, means that IT bears an outsized responsibility for doing so now. As I noted, I see no signs that the vendors are unwilling to provide solutions for those willing to be proactive. In the last five years, carbon accounting, monitoring within and outside the data center, and “smart buildings” have taken giant leaps, while solar technologies at whatever cost are far more easily implemented and accessed if one doesn’t double down on the existing utility grid. Even within the datacenter, new technologies were introduced 4 years ago by IBM among others that should have reduced energy usage by around 80% out of the box – more than enough to deliver a decrease instead of a doubling of energy usage. The solutions are there. They should be implemented comprehensively and immediately, as, by and large, has not been done.
Alternate IT Futures
I am usually very reluctant to criticize IT. In fact, I can’t remember the last time I laid the weight of the blame on them. In this case, there are many traditional reasons to lay the primary blame elsewhere, and simply suggest that IT look to neat new vendor solutions to handle urgent but misdirected corporate demands. But that begs the question: who will change the dysfunctional process? Who will change a dynamic in which IT claims cost constraints prevent it from “nice to have” energy tools, while corporate’s efforts to respond to consumer “green” preferences only brush the surface of a sea of energy-usage embedded practices in the organization?
Suppose IT does not take the extra time to note the problem, identify solutions, and push for moderate-cost efforts even when strict short-term cost considerations seem to indicate otherwise. The history of the past five years suggests that, fundamentally, nothing will change in the next five years, just as in the past five, and the enterprise will be deeper in the soup than ever.
Now suppose IT is indeed proactive. Maybe nothing will happen; or maybe the foundation will be laid for a much quicker response when corporate does indeed see the problem. In which case, in five years, the enterprise as a whole is likely to be on a “virtuous cycle” of increasing margin advantages over the passive-IT laggards.
Energy usage. Is the name not a clue? What will IT do? Get the clue or sing the blues?
No comments:
Post a Comment